A rank-one update algorithm for fast solving kernel Foley-Sammon optimal discriminant vectors
نویسندگان
چکیده
Discriminant analysis plays an important role in statistical pattern recognition. A popular method is the Foley-Sammon optimal discriminant vectors (FSODVs) method, which aims to find an optimal set of discriminant vectors that maximize the Fisher discriminant criterion under the orthogonal constraint. The FSODVs method outperforms the classic Fisher linear discriminant analysis (FLDA) method in the sense that it can solve more discriminant vectors for recognition. Kernel Foley-Sammon optimal discriminant vectors (KFSODVs) is a nonlinear extension of FSODVs via the kernel trick. However, the current KFSODVs algorithm may suffer from the heavy computation problem since it involves computing the inverse of matrices when solving each discriminant vector, resulting in a cubic complexity for each discriminant vector. This is costly when the number of discriminant vectors to be computed is large. In this paper, we propose a fast algorithm for solving the KFSODVs, which is based on rank-one update (ROU) of the eigensytems. It only requires a square complexity for each discriminant vector. Moreover, we also generalize our method to efficiently solve a family of optimally constrained generalized Rayleigh quotient (OCGRQ) problems which include many existing dimensionality reduction techniques. We conduct extensive experiments on several real data sets to demonstrate the effectiveness of the proposed algorithms.
منابع مشابه
Fast Algorithms for the Generalized Foley-Sammon Discriminant Analysis
Linear Discriminant Analysis (LDA) is one of the most popular approaches for feature extraction and dimension reduction to overcome the curse of the dimensionality of the high-dimensional data in many applications of data mining, machine learning, and bioinformatics. In this paper, we made two main contributions to an important LDA scheme, the generalized Foley-Sammon transform (GFST [7, 13], o...
متن کاملComparison of statistical pattern - recognition algorithms for hybrid processing . II . Eigenvector - based algorithm
The pattern-recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), FukunagaKoontz (F-K) transform, linear discriminant function (LDF), and generalized matched filter (GMF) algorithms. It is shown that all eigenvector-based algorithms can be represented in a g...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملOptimal subset-division based discrimination and its kernelization for face and palmprint recognition
Discriminant analysis is effective in extracting discriminative features and reducing dimensionality. In this paper, we propose an optimal subset-division based discrimination (OSDD) approach to enhance the classification performance of discriminant analysis technique. OSDD first divides the sample set into several subsets by using an improved stability criterion and K-means algorithm. We separ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on neural networks
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2010